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Abstract

Background and objectives: Excess fluid balance in acute kidney injury (AKI) may be harmful, and conversely,
some patients may respond to fluid challenges. This study aimed to develop a prediction model that can be used
to differentiate between volume-responsive (VR) and volume-unresponsive (VU) AKI.

Methods: AKI patients with urine output < 0.5 ml/kg/h for the first 6 h after ICU admission and fluid intake > 5 l in
the following 6 h in the US-based critical care database (Medical Information Mart for Intensive Care (MIMIC-III))
were considered. Patients who received diuretics and renal replacement on day 1 were excluded. Two predictive
models, using either machine learning extreme gradient boosting (XGBoost) or logistic regression, were developed
to predict urine output > 0.65 ml/kg/h during 18 h succeeding the initial 6 h for assessing oliguria. Established
models were assessed by using out-of-sample validation. The whole sample was split into training and testing
samples by the ratio of 3:1.

Main results: Of the 6682 patients included in the analysis, 2456 (36.8%) patients were volume responsive with an
increase in urine output after receiving > 5 l fluid. Urinary creatinine, blood urea nitrogen (BUN), age, and albumin
were the important predictors of VR. The machine learning XGBoost model outperformed the traditional logistic
regression model in differentiating between the VR and VU groups (AU-ROC, 0.860; 95% CI, 0.842 to 0.878 vs. 0.728;
95% CI 0.703 to 0.753, respectively).

Conclusions: The XGBoost model was able to differentiate between patients who would and would not respond
to fluid intake in urine output better than a traditional logistic regression model. This result suggests that machine
learning techniques have the potential to improve the development and validation of predictive modeling in
critical care research.
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Background
Acute kidney injury (AKI) is common in the intensive care
unit (ICU), and there is evidence that even a small increase
in serum creatinine may be associated with increased risk of
mortality [1–3]. AKI can be defined by either an elevation
in serum creatinine or a reduced urine output according to
the Kidney Disease: Improving Global Outcomes (KDIGO)
guidelines [4]. Oliguric AKI constitutes a substantial pro-
portion of the overall AKI population, and it imposes a

great challenge for fluid management. Pathophysiologically,
oliguria may represent an adaptive response in AKI, and
once an effective circulatory volume is restored by positive
fluid balance, urine output would improve. Under this cir-
cumstance, fluid administration or positive fluid balance
can be considered beneficial and those who improve with
more fluid can be considered as having volume-responsive
(VR) AKI.
Intravenous fluid challenges are often used in critical

care to restore blood pressure to improve urine output
in patients with hypotension and oliguria, respectively
[5, 6]. Recent epidemiological evidence, however, sug-
gested that large positive fluid balance may not be useful
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to improve urine output in many patients with AKI and
can even be harmful in worsening renal function
through a number of possible mechanisms including ex-
cessive kidney edema [7]. This latter type of AKI can be
considered as volume-unresponsive (VU) AKI [8].
Because early improvement in organ dysfunction is asso-
ciated with an improved survival [9], it would be best if
we can adjust the fluid treatment strategy by identifying
which patients are having VR or VU AKI.
In animal models, fractional excretion of electrolytes

was found to perform well in early differentiation between
VR- and VU-AKI [10]. However, these promising results
could not be replicated in human studies. Legrand et al.

investigated the discrimination of urinary sodium to dis-
tinguish volume responsiveness, and it was found to have
limited predictive value [11]. Currently, there is little clin-
ical information on how we can identify patients with AKI
who are VR and VU in terms of urinary output response.
We hypothesized that advanced machine learning tech-
niques may be useful to identify the most important clin-
ical factors that can differentiate between patients with VR
and VU AKI. In this study, we aimed to use machine
learning techniques to develop and validate an AKI
fluid-responsiveness model, called extreme gradient boost-
ing (XGBoost), and compared the performance of this
model to a conventional logistic regression model.

Fig. 1 Schematic illustration of the time windows for the definition of oliguria and fluid responsiveness. Oliguria was defined as urine output < 0.5ml/
kg/h for the first 6 h after ICU admission. Fluid responsiveness was defined as urine output > 0.65ml/kg/h for 18 h after initiation of fluid loading. It is
noted that the time window for the definition of oliguria preceded the exposure of fluid input

Fig. 2 Flow chart of patient selection
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Table 1 Characteristics between fluid responsive and non-responsive groups

Variables Volume unresponsive (n = 4226) Volume responsive (n = 2456) p value

Demographic variables

Gender male, n (%) 2203 (52.1) 1495 (60.9) < 0.001

Age (mean (SD)) 68.81 (15.14) 63.82 (16.67) < 0.001

Ethnicity, n (%) 0.013

Asian 58 (1.4) 45 (1.8)

Black 351 (8.3) 197 (8.0)

Hispanic 94 (2.2) 83 (3.4)

Unknown 517 (12.2) 326 (13.3)

White 3206 (75.9) 1805 (73.5)

Admission type (%) < 0.001

Elective 656 (15.5) 485 (19.7)

Emergency 3454 (81.7) 1908 (77.7)

Urgent 116 (2.7) 63 (2.6)

Elective surgery, n (%) 574 (13.6) 448 (18.2) < 0.001

ICU type (%) < 0.001

CCU 391 (9.3) 180 (7.3)

CSRU 619 (14.6) 646 (26.3)

MICU 1939 (45.9) 932 (37.9)

SICU 771 (18.2) 385 (15.7)

TSICU 506 (12.0) 313 (12.7)

Vasopressor, n (%) 1266 (30.0) 561 (22.8) < 0.001

Infection, n (%) 2639 (62.4) 1168 (47.6) < 0.001

Mechanical ventilation, n (%) 1804 (42.7) 768 (31.3) < 0.001

Serum laboratory variables, mean (SD) if not otherwise specified

Serum creatinine (μmol/l) 1.74 (1.50) 1.26 (0.98) < 0.001

Maximum glucose (mg/dl) 186.32 (99.16) 180.38 (85.71) 0.013

Minimum bicarbonate (mmol/l) 20.82 (5.41) 22.24 (4.32) < 0.001

Maximum bilirubin (mg/dl, median [IQR]) 0.80 [0.50, 1.90] 0.70 [0.40, 1.30] < 0.001

Maximum bicarbonate (mmol/l) 23.80 (4.94) 24.88 (3.97) < 0.001

Minimum chloride (mmol/l) 102.93 (6.65) 102.63 (6.16) 0.062

Maximum chloride (mmol/l) 107.94 (6.69) 108.28 (5.85) 0.036

Minimum hematocrit (%) 28.76 (5.98) 28.46 (6.21) 0.052

Maximum hematocrit (%) 35.14 (5.69) 35.93 (5.79) < 0.001

Maximum lactate (mmol/l) 3.30 (2.85) 2.75 (1.90) < 0.001

Minimum platelet (×109/l, median [IQR]) 181.00 [120.25, 253.75] 178.00 [128.00, 240.00] 0.479

Maximum potassium (mmol/l) 4.80 (0.94) 4.78 (0.96) 0.444

Maximum aPTT (median [IQR]) 34.20 [28.42, 47.80] 32.50 [27.50, 40.60] < 0.001

Maximum INR 1.89 (1.82) 1.59 (1.02) < 0.001

Minimum sodium (mmol/l) 136.42 (5.92) 136.23 (5.34) 0.210

Maximum sodium (mmol/l) 140.20 (5.57) 140.23 (4.42) 0.850

Maximum BUN (median [IQR]) 28.00 [19.00, 45.00] 20.00 [14.00, 30.00] < 0.001

Minimum WBC (×109/l) 11.67 (7.68) 10.61 (6.48) < 0.001

Maximum WBC (×109/l) 15.77 (10.08) 14.62 (9.69) < 0.001

Minimum albumin (g/dl) 2.83 (0.66) 3.03 (0.63) < 0.001
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Methods
Source of data
A large US-based critical care database named Medical
Information Mart for Intensive Care (MIMIC-III) was
analyzed [12]. The MIMIC-III database is an integrated,
de-identified, comprehensive clinical dataset containing
all the patients admitted to the ICUs of Beth Israel Dea-
coness Medical Center in Boston, MA, from June 1,
2001, to October 31, 2012. There were 53,423 distinct
hospital admissions for adult patients (aged 16 years or
above) admitted to the ICUs during the study period.
Since the study was an analysis of a third-party anon-
ymized publicly available database with pre-existing in-
stitutional review board (IRB) approval, IRB approval
from our institution was exempted. The study was re-
ported according to the recommendations of the Trans-
parent Reporting of a multivariable prediction model for
Individual Prognosis Or Diagnosis (TRIPOD) statement
[13].

Participants
Patient eligibility was considered when urine output was less
than 0.5ml/kg/h for the first 6 h after ICU admission. This
definition was consistent with the urine output component
of the KDIGO criteria [4]. To examine the impact of fluid
resuscitation on subsequent urine output response, only pa-
tients with substantial fluid intake (> 5 l) within 6 h following
the initial 6 h for assessing oliguria were eligible (Fig. 1).
Fluid intake and urine output were extracted from the nurs-
ing chart system, which more accurately reflected the actual
volume intake or output than the medical order system. Pa-
tients who left ICU during the observation period were ex-
cluded. Furthermore, patients receiving any diuretics and/or
renal replacement therapy (RRT) on day 1 were excluded.

Outcome (volume responsiveness)
The urine output within an 18-h period following the
initial 6 h for defining oliguria was used as the outcome.

Patients were considered as VR-AKI if he/she had urine
output greater than 0.65ml/kg/h, corresponding to a
30% increase as compared with the baseline value.
Otherwise, they were defined as VU-AKI.

Predictors of VR-AKI
Routinely collected clinical and laboratory variables ob-
tained within the first 6 h of ICU admission were
assessed for their ability to predict volume responsive-
ness. For some variables with multiple measurements,
both the maximum and minimum values were assessed.
Age, gender, ethnicity, admission type, elective surgery,
type of ICU and presence of infection, and vital signs in-
cluding respiratory rate, blood pressure, heart rate, and
temperature were analyzed. In addition, laboratory data
including glucose, white blood cell count (WBC),
hematocrit, chloride, potassium, sodium, lactate, creatin-
ine, blood urea nitrogen (BUN), coagulation profile,
PaO2, PaCO2, and pH were included.
Because this was a hypothesis-generating epidemio-

logical study, no attempt was made to estimate the sam-
ple size of the study; instead, all eligible patients in the
database were included to maximize the statistical power
of the predictive model. Because missing data may create
bias, variables with > 70% missing values were excluded
from further analysis. Other variables with a lesser de-
gree of missing values were analyzed using multiple im-
putation method [14].

Statistical analysis
Clinical characteristics between VR-AKI and VU-AKI
groups were compared using either Student t test or
rank-sum test as appropriate. Chi-square test or Fisher’s
exact test was employed to compare the differences of
the categorical variables [15]. A stepwise logistic regres-
sion model was used to select variables which were pre-
dictive of volume responsiveness. Both forward selection
and backward elimination were used, testing at each step

Table 1 Characteristics between fluid responsive and non-responsive groups (Continued)

Variables Volume unresponsive (n = 4226) Volume responsive (n = 2456) p value

Vital signs, mean (SD)

Maximum heart rate (/min) 106.76 (22.48) 105.97 (19.98) 0.147

Minimum systolic BP (mmHg) 85.09 (18.03) 89.16 (16.46) < 0.001

Minimum diastolic BP (mmHg) 40.38 (11.69) 43.60 (10.97) < 0.001

Maximum respiratory rate (/min) 28.17 (6.75) 27.52 (6.57) < 0.001

Maximum temperature (°C) 37.48 (0.88) 37.64 (0.76) < 0.001

Urinary biomarkers, mean (SD)

Urinary pH 5.66 (0.79) 5.78 (0.86) < 0.001

Urinary creatinine (mg/dl) 132.51 (79.89) 111.61 (73.01) < 0.001

Abbreviations: ICU intensive care unit, BP blood pressure, CCU coronary artery unit, CSRU cardiac surgery recovery unit, MICU medical ICU, SICU surgical ICU, TSICU
trauma-neuro surgical ICU, SD standard deviation, IQR interquartile range, pH potential hydrogen, aPTT activated partial thromboplastin time, WBC white blood
cell count
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for variables to be included or excluded. Akaike Infor-
mation Criterion (AIC) was used as the selection criteria
to eliminate the predictors [16].
Extreme gradient boosting (XGBoost) combined with de-

cision trees was employed to predict VR versus VU. A clas-
sification tree was used as the weak learner, and the
learning objective function was binary logistic. The boosting
method works by iteratively refitting a weak classifier (deci-
sion tree) to residuals of previous models. Each successive
classifier focused more on misclassified observations during
the previous round of fitting [17]. In this study, we
employed 300 rounds of iterations for cross-validation
process, which were expected to result in a powerful ensem-
ble classifier with superior predictive accuracy. Overfitting
can be a major problem in using machine learning tech-
niques. The ability to understand the complex relationship
in data while avoiding overfitting requires fine-tuned hyper-
parameters. XGBoost hyperparameters included learning
rate, minimum loss reduction required to make a further
partition on a leaf node of the tree, maximum depth of a
tree, subsample ratio of the training instance. The original
dataset was randomly partitioned into 5 equal-sized sub-
samples for bootstrap validation (BV). Specifically, 4 sub-
samples were used to train the model, which was then
validated in the remaining 1 subsample. Hyperparameters
were considered to be sufficiently tuned if (1) the BV train-
ing log-loss decreased as the number of trees increased and
(2) BV testing log-loss was less than 0.693 and only slightly
greater than the training log-loss (e.g., a log-loss of 0.693 is
the performance of a binary classifier that performs no bet-
ter than chance: − log 0.5 ≈ 0.693). We used a loop function
(grid search) to select the hyperparameters that the mini-
mum training log-loss should be greater than the 85th per-
centile, and the minimum testing log-loss should be less
than the 8th percentile. After choosing the hyperpara-
meters, the BV process was run for 100 times to determine
the number of trees required for the final model. The num-
ber of trees in the final XGBoost model was determined by
the minimum BV testing log-loss in each of the last 100 BV
iterations and computed the 5th percentile of that distribu-
tion. This was a conservative approach to the selection of
the number of trees, which was also described in the litera-
ture [18].

Results
Participants
Of the 10,795 patients with urine output < 0.5 ml/kg/h
for the first 6 h after ICU admission, 7491 patients
(69.4%) received fluid intake > 5 l within the following 6
h. A number of 809 patients were excluded because they
received diuretics and/or RRT on the first day. A total of
6682 patients were included in our analysis; 2456 pa-
tients had VR-AKI, and 4226 patients had VU-AKI on
day 1 in ICU (Fig. 2).

The differences in characteristics between VR and VU
groups are described in Table 1. VR group had more patients
of elective surgery prior to ICU admission than the VU

Table 2 Multivariable logistic regression model with stepwise
variable selection

Variables OR (95% CI) p value

Gender (female as reference) 1.56 [1.36, 1.78] < 0.001

Ethnicity (Asian as reference)

Black 0.85 [0.49, 1.50] 0.574

Hispanic 1.09 [0.57, 2.10] 0.785

Unknown 0.88 [0.51, 1.52] 0.632

White 0.74 [0.44, 1.26] 0.261

ICU type (CCU as reference)

CSRU 1.39 [1.04, 1.85] 0.027

MICU 0.94 [0.72, 1.22] 0.630

SICU 0.88 [0.66, 1.18] 0.391

TSICU 0.82 [0.60, 1.11] 0.200

Infection 0.77 [0.67, 0.89] < 0.001

Mechanical ventilation 0.71 [0.61, 0.81] < 0.001

Bilirubin (with every unit increment) 0.97 [0.95, 0.98] < 0.001

Lactate (with every unit increment) 0.91 [0.88, 0.94] < 0.001

Albumin (with every unit increment) 1.53 [1.38, 1.70] < 0.001

Temperature (with every unit increment) 1.19 [1.10, 1.30] < 0.001

Urinary pH (with every unit increment) 1.05 [0.97, 1.13] 0.252

Age (with each 20 years increment) 0.69 [0.63, 0.75] < 0.001

Serum creatinine
(with every 0.1 mg/dl increment)

0.98 [0.97, 0.99] < 0.001

Maximum chloride
(with every 20 mmol/l increment)

2.94 [2.08, 4.16] < 0.001

Minimum chloride
(with every 20 mmol/l increment)

0.44 [0.31, 0.60] < 0.001

Maximum glucose
(with every 20 mmol/l increment)

0.99 [0.97, 1.00] 0.164

Minimum bicarbonate
(with every 5 mmol/l increment)

1.12 [1.02, 1.22] 0.014

Minimum hematocrit
(with every 5% increment)

0.91 [0.86, 0.97] 0.002

BUN (with every 10 mmol/l increment) 0.94 [0.90, 0.99] 0.017

Maximum heart rate
(with every 10 beats/min increment)

1.03 [1.00, 1.06] 0.095

Minimum systolic BP
(with every 20 mmHg increment)

1.13 [1.04, 1.23] 0.003

Urinary creatinine
(with every 50 mg/dl increment)

0.71 [0.68, 0.75] < 0.001

Maximum aPTT (for every 10 s increment) 0.96 [0.93, 0.98] < 0.001

An OR value greater than 1 indicates that the presence of a variable or
increase in a continuous variable is associated with higher probability of
volume responsiveness
Abbreviations: OR odds ratio, BP blood pressure, aPTT activated partial
thromboplastin time, BUN blood urea nitrogen, ICU intensive care unit, BP
blood pressure, CCU coronary artery unit, CSRU cardiac surgery recovery unit,
MICU medical ICU, SICU surgical ICU, TSICU trauma-neuro surgical ICU
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group (18.2% vs. 13.6%; p < 0.001). The maximum serum
creatinine concentration (1.74 ± 1.50 vs. 1.26 ± 0.98 μmol/l;
p < 0.001) was higher, and the minimum bicarbonate con-
centration (20.82 ± 5.41 vs. 22.24 ± 4.32 mmol/l; p < 0.001)
and maximum hematocrit (35.14 ± 5.69 vs. 35.93 ± 5.79%;
p < 0.001) were lower in the VU group. The VR group had
higher urinary pH (5.78 ± 0.86 vs. 5.66 ± 0.79; p < 0.001),
lower urinary creatinine (111.61 ± 73.01 vs. 132.51 ± 79.89
mg/dl; p < 0.001), higher systolic blood pressure
(89.16 ± 16.46 vs. 85.09 ± 18.03mmHg; p < 0.001), higher
albumin (3.03 ± 0.63 vs. 2.83 ± 0.66; p < 0.001), lower rate
of mechanical ventilation (31.3% vs. 42.7%; p < 0.001), vaso-
pressor use (22.8% vs. 30.0%; p < 0.001), and infection
(47.6% vs. 62.4%; p < 0.001) than the VU group (Table 1).

The stepwise logistic regression model
The results of stepwise logistic regression model are
shown in Table 2. As expected, advanced age (odds ratio
[OR] for a 20-year increase, 0.69; 95% confidence inter-
val [CI], 0.63 to 0.75), a higher serum creatinine (OR for
each 0.1 mg/dl increase, 0.98; 95% CI, 0.97 to 0.99), and
lactate (OR for each 1-mmol/l increase, 0.91; 95% CI,

0.88 to 0.94) were associated with decreased probability
of volume responsiveness. On the contrary, a greater
value of albumin (OR for each 1-g/dl increase, 1.53; 95%
CI, 1.38 to 1.71), systolic BP (OR for each 20-mmHg
increase, 1.13; 95% CI, 1.04 to 1.23), and minimum bi-
carbonate (OR for each 5-mmol/l increase, 1.12; 95% CI,
1.02 to 1.22) were associated with increased probability
of volume responsiveness (Table 2).

The XGBoost model
The hyperparameters used in our analysis were as fol-
lows (determine by grid search): learning rate = 0.04,
minimum loss reduction = 10, maximum tree depth = 9,
subsample = 0.6, and number of trees = 300. With these
hyperparameters, bootstrap validation (BV) training
log-loss decreases as the number of trees in an ensemble
increases, and the BV testing log-loss was less than
0.693 and only slightly more than BV training log-loss as
the tree grows (Fig. 3). Feature importance was calcu-
lated by the sum of the decrease in error when split by a
variable, which reflects the contribution each variable
makes in classifying VR versus VU. The urinary
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0 100 200 300

Number of rounds

Lo
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ss

group

BV test

BV train

Fig. 3 Training process of the extreme gradient boosting machine. Sample output of bootstrap validation (BV) during XGBoost hyperparameter
tuning, using the values specified in the final XGBoost model (learning rate = 0.04, minimum loss reduction = 10, maximum tree depth = 9,
subsample = 0.6, and number of trees = 300). Log-loss value for the training and testing datasets is shown in the vertical axis. The dashed vertical
line indicates the number of rounds with the minimum log-loss in the test sample. The conditions of well-tuned model were satisfied: BV training
log-loss decreases as the number of trees in an ensemble increases, and BV testing log-loss is less than 0.693 (e.g., a log-loss of 0.693 is the
performance of a binary classifier that performs no better than chance: − log 0.5 ≈ 0.693) and only slightly more than BV training log-loss as the
tree grows.
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creatinine was the most important variable to distinguish
VR and VU group, followed by maximum BUN, age, al-
bumin, and maximum temperature (Fig. 4).

Model performance
Model discrimination was assessed using the area under
receiver operating characteristic curve (AU-ROC). The
XGBoost had a significantly greater AU-ROC than the
logistic regression model (AU-ROC, 0.860; 95% CI,
0.842 to 0.878 vs. 0.728; 95% CI, 0.703 to 0.753, respect-
ively; Fig. 5). Table 3 describes the classification or con-
fusion matrix for the two models in identifying the VR
and VU status.

Discussion
In this hypothesis-generating study, we showed that
some clinical factors were more likely to be associated
with VR-AKI than VU-AKI. Using advanced machine
learning techniques, we could identify some important

clinical factors associated with VR-AKI such as age, urin-
ary creatinine concentration, maximum BUN concentra-
tion, and albumin. These results have some implications
and require further consideration.
First, an ability to accurately identify volume responsive-

ness in critically ill patients with AKI is clinically import-
ant to avoid both hypervolemia and hypovolemia.
Currently, there is a lack of a reliable tool to distinguish
between VR and VU AKI at an early stage. In this study,
we showed that sophisticated machine learning techniques
such as the XGBoost modeling can enrich the amount of
information we can obtain from analyzing a database and
allow us to develop and validate a better-performing pre-
dictive model compared to the conventional logistic re-
gression technique. The potential usefulness of the model
is that it can help to stratify oliguria patients immediately
after ICU admission. As a result, large volume fluid can be
more accurately given to patients who are very likely to re-
spond to fluid challenge. There is evidence that fluid
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overload can result in organ dysfunctions, prolonged
mechanical ventilation, and even death [19–21]. Thus, it
is of vital importance to identify patients who will benefit
from fluid resuscitation. However, the present study can-
not provide a higher level of evidence on the effectiveness
of the XGBoosting model. Future randomized controlled
trials comparing the treatments with and without the pre-
diction model are warranted to explore the effectiveness.
Second, our results showed that urinary creatinine was

potentially useful to differentiate between patients in
AKI who were VR and VU. Probably, patients with
higher serum creatinine may also have higher excretion
of creatinine to the urine. Since the former is a bio-
marker of kidney injury (e.g., higher serum creatinine
was associated with higher risk of intrinsic injury), the
latter is also associated with increased risk of VU-AKI.
The utility of urinary biochemistry to predict AKI

outcome has been controversial in the literature. Al-
though urinary biomarkers such as creatinine and frac-
tional excretion of electrolytes were significantly
different between VR and VU groups in some animal
and human studies [10], there are also studies showing
that urinary biochemistry may not be useful in differen-
tiating between VR and VU AKI [22–25]. In our study,
we could not analyze the ability of urinary sodium and
potassium to differentiate between VR and VU AKI be-
cause a large proportion (> 70%) of patients did not have
this data.
Third, we found that patients with AKI and oliguria

after elective surgery were more likely to respond to
fluid challenges in univariate analysis. Patients who
underwent elective surgery are generally in better clin-
ical condition than patients requiring urgent surgery or
with a medical emergency. Postoperative oliguria can be
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Fig. 5 Receiver operating characteristic curve for estimating the discrimination of the logistic regression model and XGBoost model

Table 3 Classification matrix for the XGBoost and logistic regression models in the out-of-sample validation cohort

XGBoost Stepwise Logistic regression
Observed Observed

Non-responsive Responsive Non-responsive Responsive

Predicted

Non-responsive 846 180 737 228

Responsive 177 467 286 419

Correct classification (accuracy) of volume responsiveness for the XGBoost and the logistic models were 0.79 (95% CI, 0.77–0.81) and 0.69 (95% CI, 0.67–0.71), respectively
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explained by hypovolemia due to intraoperative and
postoperative insensible fluid loss. As such, they will be
more likely to benefit from a larger amount of fluid after
major surgery. However, the association of elective sur-
gery with volume responsiveness disappeared after
adjusting for other physiological variables, indicating
that hypovolemia can be represented by these variables
such as systolic blood pressure, heart rate, and
hematocrit. We found that an increased hematocrit
within the first 24 h of ICU admission was also an inde-
pendent predictor of VR (in both the logistic and
XGBoost models). This result could be explained by the
fact that hematocrit has a direct relationship with the
intravascular plasma volume and a higher hematocrit
may suggest a relative hypovolemic state [26]. Con-
versely, a higher serum creatinine on ICU admission
might indicate established renal intrinsic damage, which
is more likely to be unresponsive to fluid challenges.
This study has some strengths and weaknesses. The

XGBoost modeling is a novel technique that has not
been widely adopted in critical care research. The
XGBoost algorithm has been successfully used in some
complex scenarios such as the prediction of the failure
of the treatment for parapneumonic empyema [18], in
which the predictive accuracy of the XGBoost model
was significantly better than a generalized linear model.
This is not surprising because the XGBoost model is an
ensemble of weak prediction trees, which is able to cap-
ture complex relationships in data without the need for
high-order interactions and non-linear functions to be
explicitly specified [27]. Furthermore, this technique is
well designed to prevent overfitting by cross-validation
and regularization [17]. Our results suggest that this
technique has the potential to improve the power of crit-
ical care epidemiological studies in the future. Nonethe-
less, this was a hypothesis-generating study, and external
validation of our model is essential to confirm its utility.
A limitation of this study is that we did not have data on
the indications for large volume resuscitation. The study
was not a designed clinical trial that the indications for
large volume loading could be prespecified. However, we
have randomly selected 30 cases and found that patients
receiving > 5 l fluid during a 6-h period were those with
indications for fluid loading in order to increase the
urine output. Furthermore, the overall population had
low blood pressure (mean SBP, 85 mmHg), elevated
heart rate (mean, > 100/min), and lactate (mean, 3
mmol/l) in our study, which were consistent with the in-
dications for fluid loading (Table 1). Clinicians might
have given their patients fluid for a variety of different
reasons such as hypotension or elevated heart rate in
addition to any attempt to improve oliguria. The study
only explored the short-term effect of large volume in-
take, other long-term outcomes such as persistent AKI,

organ-failure free days, and mortality were not
investigated.

Conclusion
In conclusion, this hypothesis-generating study showed
that some clinical factors were more likely to be associated
with VR-AKI than VU-AKI. The XGBoost modeling tech-
nique could identify the predictors of VR-AKI that were
not apparent using logistic regression, resulting in a
better-performing predictive model to identify patients
with VR-AKI. Further epidemiological studies using ad-
vanced machine learning techniques to validate our results
will help us to identify the most suitable patients to be in-
cluded in clinical trials assessing the benefits of fluid ther-
apy in AKI.
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